Gravedad; Concepto y explicación de cómo surge

Se define como la fuerza que ejerce la Tierra sobre todos los cuerpos hacia su centro, siendo su valor normal (g) es 9,81 m/s2. También se le conoce como la Atracción universal de los cuerpos en razón de su masa. Para determinar el centro de gravedad hay que tener en cuenta que toda partícula de un cuerpo situada cerca de la superficie terrestre está sometida a la acción de una fuerza, dirigida verticalmente hacia el centro de la Tierra, llamada fuerza gravitatoria.

La contribución más específica de Newton a la descripción de las fuerzas de la naturaleza fue la explicación de la fuerza de la gravedad. En la actualidad los científicos saben que sólo hay otras tres fuerzas, además de la gravedad, que originan todas las propiedades y actividades observadas en el Universo: el electromagnetismo, la llamada interacción nuclear fuerte (que mantiene unidos los protones y neutrones en los núcleos atómicos) y la interacción nuclear débil (o interacción débil) entre algunas de las partículas elementales, que explica el fenómeno de la radiactividad.

La comprensión del concepto de fuerza se remonta a la ley de la gravitación universal, que reconocía que todas las partículas materiales, y los cuerpos formados por estas partículas, tienen una propiedad denominada masa gravitacional. Esta propiedad hace que dos partículas cualesquiera ejerzan entre sí una fuerza atractiva (a lo largo de la línea que las une) directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa.

Esta fuerza gravitatoria rige el movimiento de los planetas alrededor del Sol y de los objetos en el campo gravitatorio terrestre; también es responsable del colapso gravitacional que, según se cree, constituye el estado final del ciclo vital de las estrellas masivas y es la causa de muchos fenómenos astrofísicos. Véase Agujero negro; Estrella.

► Todos los cuerpos caen hacia la Tierra con la misma aceleración, independientemente de su masa

Una de las observaciones más importantes de la física es que la masa gravitacional de un cuerpo (que es el origen de la fuerza gravitatoria que existe entre el cuerpo y otros cuerpos) es igual a su masa inercial, la propiedad que determina el movimiento del cuerpo en respuesta a cualquier fuerza ejercida sobre él.

Esta equivalencia, confirmada experimentalmente con gran precisión (se ha demostrado que, en caso de existir alguna diferencia entre ambas masas, es menor de una parte en 1013), lleva implícita el principio de proporcionalidad: cuando un cuerpo tiene una masa gravitacional dos veces mayor que otro, su masa inercial también es dos veces mayor.

Esto explica la observación de Galileo —realizada con anterioridad a la formulación de las leyes de Newton— de que todos los cuerpos caen con la misma aceleración independientemente de su masa: aunque los cuerpos más pesados experimentan una fuerza gravitatoria mayor, su mayor masa inercial disminuye en un factor igual a la aceleración por unidad de fuerza, por lo que la aceleración total es la misma que en un cuerpo más ligero.

Sin embargo, el significado pleno de esta equivalencia entre las masas gravitacional e inercial no se apreció hasta que Albert Einstein enunció la teoría de la relatividad general. Einstein se dio cuenta de que esta equivalencia tenía una implicación adicional: la equivalencia de un campo gravitatorio y un sistema de referencia acelerado.

► La fuerza gravitatoria es la más débil de las cuatro fuerzas de la naturaleza.

La fuerza gravitatoria es la más débil de las cuatro fuerzas de la naturaleza. Por ejemplo, la fuerza gravitatoria entre dos protones (una de las partículas elementales más pesadas) es 1036 veces menos intensa que la fuerza electrostática entre ellos, sea cual sea la distancia que los separe. En el caso de dos protones situados en el núcleo de un átomo, la fuerza electrostática de repulsión es a su vez mucho menor que la interacción nuclear fuerte. El que la gravedad sea la fuerza dominante a escala macroscópica se debe a dos hechos:

  1. Según se sabe, sólo existe un tipo de masa, por lo que sólo existe un tipo de fuerza gravitacional, siempre atractiva; esto hace que las fuerzas gravitacionales de las numerosísimas partículas elementales que componen un cuerpo como la Tierra se sumen, con lo que la fuerza total resulta muy grande.
  2. Las fuerzas gravitacionales actúan a cualquier distancia, disminuyendo según el cuadrado de la separación entre los cuerpos.

En cambio, las cargas eléctricas de las partículas elementales, que originan las fuerzas electrostáticas y electromagnéticas, pueden ser positivas o negativas. Las cargas iguales se repelen y las cargas opuestas se atraen. Los cuerpos formados por muchas partículas tienden a ser eléctricamente neutros, y las fuerzas eléctricas ejercidas por las partículas, aunque tienen un alcance infinito al igual que la fuerza de gravedad, se cancelan mutuamente. Por su parte, las interacciones nucleares, tanto la fuerte como la débil, tienen un alcance extremadamente corto, y apenas son apreciables a distancias mayores de una billonésima de centímetro.

A pesar de su importancia macroscópica, la fuerza de la gravedad es tan débil que un cuerpo tiene que poseer una masa enorme para que su influencia sobre otro cuerpo resulte apreciable. Por eso, la ley de la gravitación universal se dedujo de las observaciones del movimiento de los planetas mucho antes de que pudiera comprobarse de forma experimental. Esto sucedió en 1771, cuando el físico y químico británico Henry Cavendish confirmó la ley utilizando grandes esferas de plomo para atraer pequeñas masas unidas a un péndulo de torsión. A partir de esas medidas, Cavendish también dedujo la masa y la densidad de la Tierra.

Durante los dos siglos posteriores a Newton, aunque la mecánica se analizó, se reformuló y se aplicó a sistemas complejos, no se aportaron nuevas ideas físicas. El matemático suizo Leonhard Euler fue el primero en formular las ecuaciones del movimiento para sólidos rígidos, mientras que Newton sólo se había ocupado de masas que se podían considerar concentradas en un punto.

Diferentes físicos matemáticos, entre ellos Joseph Louis Lagrange y William Hamilton, ampliaron la segunda ley de Newton con formulaciones más complejas. A lo largo del mismo periodo, Euler, el científico Daniel Bernoulli y otros investigadores también ampliaron la mecánica newtoniana y sentaron las bases de la mecánica de fluidos.

La gravedad suele medirse de acuerdo a la aceleración que proporciona a un objeto en la superficie de la Tierra. En el ecuador, la aceleración de la gravedad es de 9,7799 metros por segundo cada segundo, mientras que en los polos es superior a 9,83 metros por segundo cada segundo.

El valor que suele aceptarse internacionalmente para la aceleración de la gravedad a la hora de hacer cálculos es de 9,80665 metros por segundo cada segundo. Por tanto, si no consideramos la resistencia del aire, un cuerpo que caiga libremente aumentará cada segundo su velocidad en 9,80665 metros por segundo. La ausencia aparente de gravedad durante los vuelos espaciales se conoce como gravedad cero o microgravedad.

 

 Artículos Relacionados
 
 

 

Articulo Redactado por: Kilo tapias peralta Escobar

Soy el fundador de EspacioHonduras, he basado mi vida entera en los estudios, y eso me ha motivado a crear este Sitio Web, mis intenciones son las de cambiar nuestro futuro y así dar una libertad a las futuras generaciones. #kilotapias #espaciohonduras